Ev-ReconNet: Visual Place Recognition using Event Camera with Spiking Neural Networks
نویسندگان
چکیده
In this paper, we utilize the advantages of an event camera to tackle visual place recognition (VPR) problem. The camera’s high measurement rate, low latency, and dynamic range make it well-suited overcome limitations conventional vision sensors. However, apply existing convolutional neural networks (CNNs) based algorithms such as NetVLAD, asynchronous stream should be converted a synchronous image frame, which causes loss in temporal information. To address problem, paper proposes method that employs characteristic spiking (SNNs) leverage nature streams. is images tensors our preprocessing module. SNNs-based reconstruction networks, are from CNNs, reconstruct edge regardless external environment changes. Visual conducted by matching features database those used feature extraction network study. evaluate performance VPR comparing previous methods for DDD17 Brisbane-Event-VPR dataset. Experimental results demonstrate accuracy proposed better than methods, especially datasets with adverse weather conditions. We also verify energy efficiency improved SNNs over CNNs. Our code available download on https://github.com/AIRLABkhu/EvReconNet.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Processing visual stimuli using hierarchical spiking neural networks
Based on spiking neuron models and different receptive field models, hierarchical networks are proposed to process visual stimuli, in which multiple overlapped objects are represented by different orientation bars. The main purpose of this paper is to show that hierarchical spiking neural networks are able to segment the objects and bind their pixels to form shapes of objects using local excita...
متن کاملSimulation of Visual Attention Using Hierarchical Spiking Neural Networks
Based on the information processing functionalities of spiking neurons, a hierarchical spiking neural network model is proposed to simulate visual attention. The network is constructed with a conductance-based integrate-and-fire neuron model and a set of specific receptive fields in different levels. The simulation algorithm and properties of the network are detailed in this paper. Simulation r...
متن کاملProsodic Event Recognition Using Convolutional Neural Networks with Context Information
This paper demonstrates the potential of convolutional neural networks (CNN) for detecting and classifying prosodic events on words, specifically pitch accents and phrase boundary tones, from frame-based acoustic features. Typical approaches use not only feature representations of the word in question but also its surrounding context. We show that adding position features indicating the current...
متن کاملVisual Character Recognition using Artificial Neural Networks
The recognition of optical characters is known to be one of the earliest applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In this paper, a simplified neural approach to recognition of optical or visual characters is portrayed and discussed. The document is expected to serve as a resource for learners and amateur investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Sensors Journal
سال: 2023
ISSN: ['1558-1748', '1530-437X']
DOI: https://doi.org/10.1109/jsen.2023.3298828